Quantcast
Channel: Cryptology ePrint Archive
Viewing all articles
Browse latest Browse all 30352

Impossibility Results for Leakage-Resilient Zero Knowledge and Multi-Party Computation, by Rafail Ostrovsky and Giuseppe Persiano and Ivan Visconti

$
0
0
In [AGP14] Ananth et al. showed that continual leakage-resilient non-transferable interactive proofs exist when a leak-free input-encoding phase is allowed and a common reference string is available. They left open the problem of removing the need of a common reference string. In [BGJK12] Boyle et al. showed that for some interesting functionalities continual leakage-resilient secure computation is possible when leak-free interactive preprocessing and input-encoding phases are allowed. They left open the problem of removing the interactive preprocessing. In this work we study the above questions. Our main contribution shows that leakage-resilient black-box zero-knowledge is impossible when relying on a leak free input-encoding phase only (i.e., without CRS/preprocessing). Additionally, we also show that leakage-resilient multi-party computation for all functionalities is impossible (regardless of the number of players assuming just one corrupted player) when relying only on a leak-free input-encoding phase (i.e., without CRS/preprocessing). Our results are achieved by means of a new technique to prove lower bounds for leakage-resilient security. We use leakage queries to run an execution of a communication-efficient insecure (i.e., non-simulatable) protocol in the head of the adversary. Moreover our work shows an interesting connection between leakage resilience and security against reset attacks.

Viewing all articles
Browse latest Browse all 30352

Trending Articles