We find a one to one correspondence between quadratic APN functions without linear or constant terms and a special kind of matrices (We call such matrices as QAMs). Based on the nice mathematical structures of the QAMs, we have developed efficient algorithms to construct quadratic APN functions.
On $\mathbb{F}_{2^7}$, we have found more than 470 classes of new CCZ-inequivalent quadratic APN functions, which is 20 times more than the known ones. Before this paper, there are only 23 classes of CCZ-inequivalent APN functions on $\mathbb{F}_{2^{8}}$ have been found. With our method, we have found more than 2000 classes of new CCZ-inequivalent quadratic APN functions, and this number is still increasing quickly.
↧