Quantcast
Channel: Cryptology ePrint Archive
Viewing all articles
Browse latest Browse all 30214

Robust Profiling for DPA-Style Attacks, by Carolyn Whitnall and Elisabeth Oswald

$
0
0
Profiled side-channel attacks are understood to be powerful when applicable: in the best case when an adversary can comprehensively characterise the leakage, the resulting model leads to attacks requiring a minimal number of leakage traces for success. Such `complete' leakage models are designed to capture the scale, location and shape of the profiling traces, so that any deviation between these and the attack traces potentially produces a mismatch which renders the model unfit for purpose. This severely limits the applicability of profiled attacks in practice and so poses an interesting research challenge: how can we design profiled distinguishers that can tolerate (some) differences between profiling and attack traces? This submission is the first to tackle the problem head on: we propose distinguishers (utilising unsupervised machine learning methods, but also a `down-to-earth' method combining mean traces and PCA) and evaluate their behaviour across an extensive set of distortions that we apply to representative trace data. Our results show that the profiled distinguishers are effective and robust to distortions to a surprising extent.

Viewing all articles
Browse latest Browse all 30214

Trending Articles