Quantcast
Channel: Cryptology ePrint Archive
Viewing all articles
Browse latest Browse all 30150

New bit-parallel Montgomery multiplier for trinomials using squaring operation, by Yin Li and Yiyang Chen

$
0
0
In this paper, a new bit-parallel Montgomery multiplier for $GF(2^m)$ is presented, where the field is generated with an irreducible trinomial. We first present a slightly generalized version of a newly proposed divide and conquer approach. Then, by combining this approach and a carefully chosen Montgomery factor, the Montgomery multiplication can be transformed into a composition of small polynomial multiplications and Montgomery squarings, which are simpler and more efficient. Explicit complexity formulae in terms of gate counts and time delay of our architecture are investigated. As a result, the proposed multiplier has generally 25\% lower space complexity than the fastest multipliers, with time complexity as good as or better than previous Karatsuba-based multipliers for the same class of fields. Among the five irreducible polynomials recommended by NIST for the ECDSA (Elliptic Curve Digital Signature Algorithm), there are two trinomials which are available for our architecture. We show that our proposal outperforms the previous best known results if the space and time complexity are both considered.

Viewing all articles
Browse latest Browse all 30150

Trending Articles