Historically, multivariate public key cryptography has been less than successful at offering encryption schemes which are both secure and efficient. At PQCRYPTO '13 in Limoges, Tao, Diene, Tang, and Ding introduced a promising new multivariate encryption algorithm based on a fundamentally new idea: hiding the structure of a large matrix algebra over a finite field. We present an attack based on subspace differential invariants inherent to this methodology. The attack is is a structural key recovery attack which is asymptotically optimal among all known attacks (including algebraic attacks) on the original scheme and its generalizations.
↧