Quantcast
Channel: Cryptology ePrint Archive
Viewing all articles
Browse latest Browse all 30189

On the Existence of Extractable One-Way Functions, by Nir Bitansky and Ran Canetti and Omer Paneth and Alon Rosen

$
0
0
A function f is extractable if it is possible to algorithmically ``extract,'' from any adversarial program that outputs a value y in the image of f, a preimage of y. When combined with hardness properties such as one-wayness or collision-resistance, extractability has proven to be a powerful tool. However, so far, extractability has not been explicitly shown. Instead, it has only been considered as a non-standard *knowledge assumption* on certain functions. We make two headways in the study of the existence of extractable one-way functions (EOWFs). On the negative side, we show that if there exist indistinguishability obfuscators for a certain class of circuits then there do not exist EOWFs where extraction works for any adversarial program with auxiliary-input of unbounded polynomial length. On the positive side, for adversarial programs with bounded auxiliary-input (and unbounded polynomial running time), we give the first construction of EOWFs with an explicit extraction procedure, based on relatively standard assumptions (e.g., sub-exponential hardness of Learning with Errors). We then use these functions to construct the first 2-message zero-knowledge arguments and 3-message zero-knowledge arguments of knowledge, against the same class of adversarial verifiers, from essentially the same assumptions.

Viewing all articles
Browse latest Browse all 30189

Trending Articles